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A strain model for antithetic fabric rotation in shear band structures 
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Abstract - -A numerical strain model based on infinitesimal strain theory is presented which simulates the 
progressive deformation and rotation of a foliated microlithon. It can be shown that an antithetical rotation of the 
microlithon's foliation with respect to the bulk sense of shear is a geometric consequence of specified strain 
conditions. The application of the model to asymmetric shear band structures described from the Gurktal  Nappe,  
Eastern Alps,  reveals that even the internal foliation of these structures must  have been rotated antithetically. 
This corresponds with rare field observations and supports  the suitability of asymmetric shear band structures as 
indicators for the local sense of shear. 

INTRODUCTION 

THE idea to investigate the strain history of shear band 
structures by means of computer modelling arose during 
field work in the southern Gurktal Nappe, Eastern Alps 
(Stock 1989). In this area, shear band structures as 
shown in Fig. 1 are the most frequent asymmetric 
structures indicating non-coaxial strain. 

Asymmetric shear band structures originate from a 
non-coaxial deformation with both stretching and 
shearing components parallel to a pre-existing foliation 
(Platt 1979, 1984, Platt & Vissers 1980, Harris & 
Cobbold 1984, Hanmer 1986). The general suitability 
of asymmetric shear band structures as indicators for 
the bulk sense of shear is still being discussed (Pass- 
chier 1984, Behrmann 1987). The most common 
interpretation is, however, that both the bulk sense of 
shear on the external foliation and the sense of shear 
on the shear bands are identical (in Fig. 1 they are all 
dextral). If this assumption holds true, the internal 
foliation between the shear bands must have been 
rotated antithetically. The question is thus which strain 
geometry (homogeneous/heterogeneous, pure shear/ 
simple shear, etc.) gives rise to these antithetical fabric 
rotations. 

The theoretical and mathematical fundamentals of 
the present paper are the theory of strain partitioning 
(Means et al. 1980, Lister & Williams 1983), the tensor 
calculus and Mohr equations for infinitesimal plane 
strain (Means 1976, Ramsay & Huber 1983) and the 
equations for infinitesimal rigid-body rotation (Ghosh 
& Ramberg 1976). 

BASIC APPROACH 

After initial development of shear bands, the defor- 
mation of shear band structures is heterogeneous and 
even discontinuous. For the purpose of analysis of this 
deformation path a strain model is needed that gives a 
sufficient solution to the problem but that nevertheless is 
based on a simple and reliable approach. 

Following Lister & Williams (1983), a state of homo- 
geneous infinitesimal strain is usually determined by rate 
of stretching, shear-induced vorticity, spin and rate of 
translation. Essential for any strain description is the 
chosen reference frame. In the case of a planar structure 
such as a foliation, the complete strain can even be 
described by partitioning into a pure shear component 
and a simple shear component parallel to the foliation, 
and into rates of rotation and translation of the foliation 
(Fig. 2). 

In Fig. 2(a), the foliation is still a passive marker and 
the deformation is homogeneous on any scale. In Fig. 
2(b), however, the foliation causes the strain partition- 
ing. It consists of numerous foliation sheets which are 
separated by discrete shear planes, and the simple shear 
component itself is further partitioned into discrete slips 
between the single foliation sheets. On a small scale this 
is still a bulk homogeneous simple shear but on a large 
scale the deformation is now heterogeneous. Within the 
sheets the deformation is pure shear because the shear- 
induced vorticity is reduced to zero. 

The examples in Fig. 2 illustrate two extremes in 
straining a pre-existing foliation. In reality, a superposi- 
tion of both strain types is expected to take place with a 
reduction of the shear-induced vorticity in the less 
deformable layers and an increase in the more deform- 
able layers (respectively a discrete slip on foliation- 
parallel shear planes). The bulk strain will not be affec- 
ted by this strain partitioning but deformation energy 
will be minimized especially when deformation changes 
from ductile to brittle. The partitioning of simple shear 
into discrete slips parallel to a pre-existing planar struc- 
ture is expected before a corresponding partitioning 
even of the pure shear component because potential 
angular and conjugate shear planes (e.g. shear bands) 
still do not exist. 

To describe the approximate deformation of a single 
asymmetric shear band structure, an elliptic foliated 
microlithon is chosen (Fig. 3). It is defined by its ellip- 
ticity (R = a/b) and by the orientation of its long axis 
(0a). External and internal foliations (Se, si) are passive 
markers to fix the reference frame (X-Y) and to illus- 
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(a) (b) 

(c) (d) 

(e) 
Fig. 1. Asymmetric shear band structures with a dextral sense of shear. (a) Extensional crenulation cleavage. (b) Multiple 

shear bands. (c) Conjugate shear bands. (d) Boudinage with rigid microlithons. (e) Foliation fish. 

trate the internal fabric rotation. The unconstrained 
matrix is homogeneously deformed by combined rates 
of simple and pure shear 0'x', ex') with a variable 
strain-type ratio (Sr = e,'/yx'). Since the reference frame 
is fixed to the external foliation, translation and spin of 
the foliation are set to zero. 

The microlithon shall be completely separated from 
the matrix by a non-cohesive surface. The relative defor- 
mability (D) of the microlithon is variable in relation to 
the matrix: It is rigid for D = 0 (100% rigid-body ro- 
tation) and it is as deformable as the matrix for D = 1 
(100% deformation). The modified strain rate tensor 
(L{) for the deformation of the microlithon is: 

L I =  D L ' =  D (eO -e~/'Yx 1 (1) 

where L' is the strain rate tensor for the matrix defor- 
mation. The modified equation of Ghosh & Ramberg 
(1976) for the microlithon's rigid-body rotation is: 

)( < - '  
0 4 = ( 1 . D  e2. s i n20~+  

\ R ~ + I  
R e coS20a -t- sin20a/ 

7.'~ ~ +--1- -), (2) 

where 0; is the rate of rigid-body rotation. It results from 
integrating all single surface rotation rates of the tensor 
(1 - D) L' over the microlithon's complete surface. It is 
important to mention here that especially in the case of 
small ellipticities rigid-body rotation needs inhomoge- 
neous matrix deformation to ensure strain compatibi- 
lity. Rigid bodies with large ellipticities (R > 10), 
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Fig 2. Strain partitioning by a pre-existing foliation. (a) The external strain (ej, Wx) is partitioned into spin (0[), simple shear 
(7's; with shear-induced vorticity, w~ = y') and pure shear (e~). (b) The simple shear is additionally partitioned into discrete 

translations (t~) and the internal shear-induced vorticity is reduced to zero. 
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Fig. 3. Simplified model for the deformation of a shear band structure. 
(a) The cross-section of a single microlithon is assumed to be elliptic; 
ellipticity, R=a/b; ellipse orientation, 0,; orientation of the internal 
foliation, 0si. (b) The matrix is marked by the external foliation (s¢), 
the microlithon is marked by the internal foliation (si) and the bulk 
strain is partitioned into dextral simple shear (y,~) and extensional pure 

shear (e'). 

however, rotate approximately like passive markers and 
will hardly affect matrix deformation. 

According to the above considerations about strain 
partitioning in the presence of non or less cohesive 
structures, the internal deformation of the microlithon 
may be of two opposite types. The first internal strain 
type is a homogeneous non-coaxial one with the same 
principal strain axes and the same strain-type ratio 
(e'/y') as the external bulk strain (Fig. 4a). Only the 
strain amounts may be reduced according to the relative 
deformability of the microlithon. The spin (0~i) of the 
internal foliation is then: 

Osi = 0 a + D (e~ sin 20si + ~'x COS20si), (3) 

where 0si is the orientation of the foliation. 
The opposite internal strain type is a coaxial one (Fig. 

4b) with only a pure shear component (eai) left. Its 
principal strain axes are parallel to the ellipse axes and 

t . rotate with the spin (0ai). 

e~i = D ( ~  sin 20a - e~ cos 20a) (4a) 

0ai = D (),~ COS20a Jr ~'x sin 20a). (4b) 

The corresponding simple shear component (Y~i) par- 
allel to the long axis is set to zero because it is taken to be 
compensated by discrete slips on the long sides of the 
ellipse. So the spin of the internal foliation (0~) is: 

t t ¢ 0"i = 0a + 0ai -- eai sin 2(0si -- 0~). (4C) 

The complete internal deformation is heterogeneous 
because otherwise it would not be compatible to the 
ellipse deformation prescribed by equation (1). Coaxial 
deformation can only take place in the ellipse's central 
part where its long sides are approximately parallel to 
the ellipse and strain axes. At the ellipse's ends, how- 
ever, deformation must be non-coaxial for the internal 
strain to remain balanced. 

Equations (1)-(4c) are the basic equations to investi- 
gate the antithetical rotation of the microlithon's inter- 
nal foliation. Equation (1) yields the rate of deformation 
of the microlithon, equation (2) yields its rate of rigid- 
body rotation, equation (3) yields the spin of the internal 
foliation in homogeneous non-coaxial strain and 
equation (4c) yields the same spin in heterogeneous but 
centrally coaxial strain. In reality, a combination of 
equations (3) and (4c) is most likely and equation (4c) 
may become more relevant in discribing cases with 
increasing ellipticities. 

m=,.= %' ~=....= %' 

1 l 
e" 
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(a)  

T T 
(b) 

Fig. 4. Strain partitioning by an elliptic microlithon. The bulk strain is partitioned into rigid-body rotation (0a') and internal 
deformation. (a) Non-coaxial internal deformation with identical internal and external strain axes. (b) Coaxial internal 
deformation with identical internal strain and ellipse axes; the shear-induced vorticity is compensated by discrete slips on 

the long sides of the ellipse. 
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Fig. 5. Simple shear deformation of an incompetent microlithon. (a) Non-coaxial internal deformation. (b) Coaxial internal 
deformation. (0~ = T E T A ,  0si = TETSI . )  

NUMERICAL APPLICATION: PROGRESSIVE 
DEFORMATION 

In order to simulate the progressive deformation and 
rotation of the foliated microlithon, numerical 
application is used. Starting with initial values for 
ellipticity and orientation, the calculation gives their 
final values after a finite bulk strain of the matrix. For 
this purpose a time-related finite-difference method is 
used with the finite strain (Yx, ex) being subdivided in 
numerous finite increments (A~--Z~- A t <  = 0.001, 
A ~  = tx At < = 0.001). For these small increments the 
equations (1)-(4c) are still valid and can be used in a 
numerical algorithm of a BASIC program called 
PROGDEF.  (Listings and discettes are available with 
the author.) 

Each pass through this algorithm yields the results 
of one increment of matrix deformation. At first, 
the new ellipticity and the new orientation of the micro- 
lithon are calculated using the ellipse equation 
(Ax 2 + Bxy + Cy 2) = 1. In  a following step, the incre- 
mental rigid-body rotation of the microlithon is calcu- 
lated and added to its former orientation. And, finally, 
the incremental rotation of the foliation is calculated and 
added to its former orientation together with the rigid- 

body rotation. This sequence is repeated for every 
increment of matrix deformation until a chosen finite 
deformation is reached. For this purpose, the pure shear 
increments (Atx) are added to yield the finite logarithmic 
pure shear (ex), and the simple shear increments (AT~) 
are added to yield the finite simple shear (~,~). 

The deformation simulated by this program is a 
steady-state flow with constant strain increments. This 
means that there is no spin of the external foliation in 
relation to the bulk strain axes and no dynamic change of 
flow. For less complex strain situations (D = 1, D = 0, 
Sr = 0,St = ~ ) ,  the program is checked by the analytic 
equations of Cox (1971) and Ramsay & Huber (1983, 
pp. 289-292) .  

Figures 5-7 illustrate three examples for antithetic 
rotations of the internal foliation calculated by PRO- 
GDEF (0a = T E T A ,  0, i = T E T S I ) .  

Figure 5 shows the simple shear deformation of a 
horizontally oriented microlithon with no competency 
contrast relative to the matrix (D = 1). In Fig. 5(a) with 
the internal deformation being non-coaxial, the ellipse 
acts like a passive marker; there is no antithetical ro- 
tation of the internal foliation. In Fig. 5(b) with the 
internal deformation being coaxial, however, the inter- 
nal foliation rotates antithetically. 
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Fig. 6. Combined simple and pure shear deformation of an inclined and relatively competent microlithon. (a) Non-coaxial 
internal deformation. (b) Coaxial internal deformation. 
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Fig. 7. Simplc shear deformation of an incompetent Riedel structure. (a) Non-coaxial internal deformation. (b) Coaxial 
internal deformation. 

Figure 6 shows the combined simple and pure shear 
deformation and rotation of an inclined and relatively 
competent (D = 0.2) microlithon. This example is most 
likely for real asymmetric shear band structures. In Fig. 
6(a) (non-coaxial internal deformation) an antithetical 
rotation of both the microlithon and the foliation is seen. 
It results from the rigid-body rotation of the microlithon 
which is caused by the extensional pure shear com- 
ponent. In Fig 6(b) this effect is amplified by the coaxial 
internal deformation. 

Figure 7 shows the simple shear deformation of a 
Riedel structure (initial angle of 17 ° with the shear 
plane) with no competency contrast (D = 1) and rotat- 
ing like a passive marker (R = 100). Although the 
boundary shears rotate synthetically, the internal folia- 
tion in Fig. 7(b) (coaxial internal deformation) rotates 
antithetically. 

NUMERICAL APPLICATION: STRAIN 
CALCULATION 

A further program, STRAIN, allows the calculation 
of finite strains from real asymmetric shear band struc- 
tures. It is a modification of the program P R O G D E F  
and needs as input data the final ellipticity (RN) and the 
orientation (0~N) of the real microlithon, the final orien- 
tation of its internal foliation (0siN) and the measurable 
logarithmic change of length (e~) of the external foliation 

\ L.. \ 
Fig. 8. Changes of length in a shear band structure. Initial length of the 
internal and external foliation, Lsi0; final length of the internal folia- 

tion, Lsiy; final length of the external foliation, L~. 

with respect to the internal foliation. In Fig. 8, Lsi N is the 
final length of the internal foliation and Lse is the length 
it would have outside the microlithon and still being 
parallel to the external foliation. Both lengths can be 
roughly measured from real shear band structures and 
yield ez using the following equation: 

s. = In(1 + Lse~ LsiN]. (5a) 
- LsiN / 

Inside the microlithon, the logarithmic change of 
length ( e j  of the internal foliation with respect to its 
original length (Lsi0) is: 

e~i = in(1 + LsiN-: Lsi°) (5b) 
• Lsi0 /" 

It has to be calculated numerically by: 

t 1 ,' t 
Esi = D(~ Yx sin 20si - e x cos 20si ) (5c) 

for the non-coaxial internal deformation, or by: 

g'i = eai cos 2(0si-  0a) (5d) 

for the coaxial internal deformation. The sum of both 
changes of lengths (ez+e~i) is equal to the finite pure 
shear component (ex) parallel to the external foliation 
which is the total horizontal change of length during the 
entire deformation: 

ex = ln(1 + Lse ~ -Lsi°) = E'z + ~'si. (5e )  
tsi0 / 

Only the relative deformability of the microlithon can- 
not be measured and has to be estimated. The program 
proceeds iteratively, based on the conditions that the 
initial orientation of the internal foliation is equal to that 
of the external foliation (0si o = 0se = 90 °) and that the 
sum of the changes of length of the internal foliation is 
equal to the finite pure shear (equation 5e). 

Output data are the values for finite dextral simple 
shear (Tx), for finite logarithmic extensional pure shear 
(ex), for strain-type ratio ( S  r = ex~x)  , for initial ellipticity 
(Ro) and orientation (Oao) of the microlithon, and for 
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initial orientation (0si0 = 90 °) and finite logarithmic 
change of length (esi) of the internal foliation. 

In the following section, the strain calculation for a 
shear band structure observed in the southern Gurktal 
Nappe (Eastern Alps, Austria) is presented. The inves- 
tigated outcrop is located at the Krobathen mountain 
(Feldkirchen, Carinthia) showing a brittle-ductile shear 
zone with a duplex structure in the Murau Limestone 
(Fig. 9) The sense of shear of the duplex is dextral and 
easterly directed, Below the duplex structure and within 
the unfaulted and strongly foliated limestone, several 
asymmetric shear band structures are developed. Figure 
10 shows one of these structures with a component 
dolomitic layer being cut by shear bands and, as shown 
by the above situated duplex structure, indeed rotated 
antithetically. 

Table 1 gives the finite strain calculations for this shear 
band structure. Negative values of 7x indicate a synthetic 
fabric rotation. Although the microlithons must have 
been rather undeformable (D = 0.1), the calculations 
were also executed for larger deformabilities just to 
demonstrate the effect of different deformabilities. But 
even for D = 0.1, an antithetic rotation of the internal 
foliation results. Further, a finite strain of Yx = 0.6 for 
the simple shear component and of ex = 0.6 for the 
extensional logarithmic pure shear component is calcu- 
lated. This is equivalent to a dextral shear angle of 31 ° 
and to an elongation of 82% in the x-direction. The 
strain-type ratio amounts to Sr = eJyx = 1. Strain calcu- 
lations for other asymmetric shear band structures give 
similar results. 

Table 1. Strain calculations for the Krobathen shear  band structure 
shown in Fig. 10 

Data measured  from the shear  band structure in Fig. 10 

R N 0aN 0si N E: 

2.9 108.0 80.0 0.53 

Calculated data 

D Ro Oao Osii~ e~i Yx ex Sr 

(a) For non-coaxial internal deformation: 
0.0 2.9 118.0 90.0 0.00 0.54 0.53 0.98 
0.1 2.8 121.7 90.0 0.06 0.56 0.59 1.06 
0.2 2.7 126.7 90.0 0.14 0.57 0.67 1.18 
0.3 2.7 133.7 90.0 0.24 0.54 0.77 1.43 
0.4 2.7 143.7 90.0 0.37 0.44 0.90 2.04 
0.5 2.9 157.8 90.0 0.52 0.18 1.05 5.85 
0.6 3.6 177.3 90.0 0.68 -0 .41  1.21 -2 .97  

(b) For coaxial internal deformation: 
0.0 2.9 118.0 90.0 0.00 0.54 0.53 0.98 
0.1 2.8 119.7 90.0 0.01 0.55 0.54 0.98 
0.2 2.7 121.4 90.0 0.01 0.57 0.54 0.95 
0.3 2.7 122.8 90.0 0.02 0.62 0.55 0.88 
0.4 2.8 123.7 90.0 0.01 0.70 0.54 0.78 
0.5 2.9 123.5 90.0 0.00 0.84 0.53 0.63 
0.6 3.3 121.4 90.0 - 0 . 0 3  1.11 0.50 0.45 
0.7 4.3 115.7 90.0 -0 .11  1.62 0.42 0.26 
0.8 8.1 104.3 90.0 - 0 . 3 8  2.84 0.16 0.06 

DISCUSSION AND CONCLUSION 

It has been shown that combined simple and pure 
shear will cause antithetical fabric rotations in shear 
band structures if the bulk strain is further partitioned 
into rigid-body rotation and reduced internal defor- 
mation. Simple shear without any foliation-parallel pure 
shear will also produce antithetical fabric rotation if a 
reduction of the shear-induced vorticity inside the shear 
band structures takes place. 

Strain calculations from real asymmetric shear band 
structures have shown that these structures must have 
developed in combined simple shear and extensional 
pure shear with the internal foliation being rotated 
antithetically. For small relative deformabilities of the 
microlithons (D = 0.1 to D = 0.3), the calculated finite 
simple shear (Yx) amounts to 0.5-0.6, and the exten- 
sional logarithmic pure shear (ex) amounts to 0.3-0.6. 

The strain model presented above is a kinematic one 
which is only based on geometrical constraints. It does 
not include physical parameters such as stress, viscosity 
and friction, and even the development of new shear 
planes is not considered. But it describes sufficiently well 
the range of deformation types--from rigid-body ro- 
tation to non-coaxial and coaxial internal strain--that 
enable antithetical fabric rotations. 

The main problem of the model is that a single elliptic 
microlithon in a homogeneous matrix has been assumed 
rather than a rhombic one surrounded by other micro- 
lithons. Adjoining microlithons will change the rotation 
rates given by equation (2) because otherwise gaps and 
overlaps would occur and strain would not be compat- 
ible. The same rule should apply to other inhomo- 
geneities of the embedding matrix. But following 
Bretherton (1962) and Passchier (1987), the rotation of 
nearly rhombic microlithons is not very different from 
elliptic ones. And following Tullis (1976), who investi- 
gated experimentally the deformation of micas, a matrix 
consisting of numerous microlithons only slows down 
the rotation rate but does not change its sense. 

Thus, the model is suitable to determine the sense of 
rotation of a given structure and to decide whether it is, 
for example, an antithetically rotated shear band struc- 
ture or a synthetically rotated bookshelf structure (Ram- 
say & Huber 1987, p. 633). 

The finite simple shear of about 0.6---as calculated 
from real shear band structures--is very small for shear 
zones. And the additional pure shear poses problems for 
the strain compatibility because it is not homogeneous 
over the entire shear zone. But shear band structures are 
typical for brittle-ductile and brittle deformations with 
most of the simple shear being partitioned into discrete 
slips on foliation-parallel shear planes (see Fig. 2b). So 
the calculated simple shear might be only a minimum, 
sufficient to determine the sense of shear of the bulk 
deformation. And the extensional logarithmic pure 
shear of about 0.6 might be only a local deviation from 
the mean simple shear since it is caused by heterogen- 
eities in the deforming rock. Even duplex structures 
represent a local--compressive--pure shear in addition 
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(a) 

W E 

10 cm I I 

Fig. 10. A single shear band structure of the Krobathen shear zone. Below the duplex structure, a competent dolomitic layel 
is cut by brittle shear bands. The microlithons are rotated antithetically with respect to the bulk sense of shear. 
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to the major simple shear, and their coexistence with 
extensional shear band structures in one and the same 
shear zone is not contradictional as seen in Fig. 9 or as 
described by Platt & Leggett (1986). 
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